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Abstract—Low- and high-Rayleigh number convections induced by internal heat generation in a vertical
porous cylinder are studied in different ways according to their flow structures. At low Rayleigh numbers,
a first-order partial Galerkin scheme is proved to be effective. Convection at high Rayleigh numbers is
characterized by a homogeneous upward flow in the central part of the cylinder and a very thin downward
boundary layer on the cooling wall, with the effect of the curvature of the boundary being negligible. By
introducing a characteristic length in the same form as the hydraulic radius, the results can be applied to
any other enclosures with non-circular boundaries. Comparison of results for a cylinder with those for a
rectangular enclosure strongly supports the idea.

1. INTRODUCTION

NATURAL convection in porous enclosures with inter-
nal heat generation has received more and more atten-
tion owing to its possible applications in engineering
problems, such as heat removal from radioactive
waste materials, storage of agricultural products, exo-
thermic chemical reaction, etc. Haajizadeh er al. [1]
have theoretically studied natural convection inside a
rectangular porous enclosure with uniform heat gen-
eration. Vasseur ef al. [2] have presented numerical
results on natural convection in an internally heated
horizontal porous annulus. Stewart and Dona [3]
were concerned with a situation similar to that in a
cylindrical food-storage bin which was modellized
with a heat generating vertical porous cylinder, adia-
batic at the bottom and cooled at the side wall and
the top boundaries.

In the present study, we deal with natural con-
vection in a vertical porous cylinder with uniform
internal heat generation and side-wall cooling by the
partial Galerkin method and the finite difference
method. In the low Rayleigh number region, an effec-
tive partial Galerkin scheme is developed. Its first-
order approximation, valid at low Rayleigh numbers
by comparison with the finite difference scheme, gives
a better physical explanation of the problem. In the
high Rayleigh number region, emphasis is placed on
the structures of the stratification at the interior region
and boundary-layer flow along the vertical wall of the
cylinder. The flow in a cylinder is also compared with
that in a vertical rectangular enclosure to examine
whether the curvature of the cooled wall has any
effect on the flow structure and heat transfer at high
Reynolds numbers when boundary-layer flow is
dominant.

2. MATHEMATICAL MODEL

The geometry of the problem considered is shown
in Fig. 1. Owing to the symmetry of the boundary
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conditions and the gravitational force, steady-state
flows in the cylinder are assumed to be two-dimen-
sional and symmetrical about the central vertical axis
of the cylinder. The governing equations, i.e. Darcy’s
equation and the equation of the conservation of
energy, are given in their dimensionless form [4] as

follows :
20 oT
1< Y - vl
<V ; ar)llx Ra<r 6r> (1)

T _ o
Vr+vi =V_T+f (2)

where T stands for temperature, u and v velocities
in the r- and z-directions, respectively, f the distri-
bution function of heat generation rates, and V? the
Laplacian operator in the cylindrical coordinate
system. Stream function ¥ is defined as

a7'/8z'=0
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FiG. 1. Flow geometry and coordinate system.
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g gravitational acceleration

H aspect ratio. H'/R’

H’  height

k effective thermal conductivity

L width of a vertical rectangular enclosurc

truncating numbers of expansion series

Nu  local Nusselt number

p pressure, p'k/( po)

R radius of a cylinder

F radial distance. /R’

Ra  Rayleigh number, gfSx R * /(avk)

R, equivalent radius defined in equation
(10)

s total length of cooling boundaries
around a vertical section

NOMENCLATURE
A, area of a horizontal section S’ heat generation rate
A, area of vertical cooling surface T temperature, (77— T, )k/(S'R'")
¢ specific heat capacity T, temperature at pure-conduction state
t distribution function of heat generation T, maximum temperature
1. /> functions defined in partial Galerkin u radial velocity component. u'R'/x
scheme for  and T. respectively I velocity vector, [u. ]

vertical velocity component, ¢’ R/«
vertical distance. =’/ R’.

[ -1

Greek symbols

b equivalent thermal diffusivity
i) thermal expansion coeflicient
0 temperature defined by (7T—T.)
K permeability
i dynamic viscosity
v kinematic viscosity
P fluid density
v stream function.
Superscript

’

dimensional variable.

_,l ("lﬁ) l-z,l, (lﬂ (3)

u= -
roz’ Foor

The boundary conditions on  and T are

¥ =0 atall boundaries
cT
(,T_' =0 at-=0
AT
C;’ =0 atr=0
or
T=0 atr=1 4)

In the present paper, we only consider the situation
of uniform heating, i.e. f=1 in equation (2), and
adiabatic top boundary. However, non-uniform heat
generation and top-boundary cooling can have sig-
nificant effects on heat transfer, particularly the
maximum temperature: these results are reported
elsewhere [4].

2.1. Partial Galerkin scheme
Stream function ¢ and temperature 7 in equations
(1) and (2) can be partially expanded as follows:

N
Yo=fi(r) Y sinnac

n=1

M
T=T.+e=1—r)+/s(r) Y, cosmnz (5)
mo= 1
where T, = (1—r")/4 is the temperature of pure-
conduction solution and 8 the deviation from it. It
was proved that using the trigonometric functions in
expanding solutions is quite efficient to the problem

of natural convection in a porous medium [5, 6], and
that the first-order approximation can bring about
very simple and relatively accurate solutions at low
Rayleigh numbers [5].

Although solutions can also be obtained for any
higher truncation numbers N and M, we focus our
attention here on the first-order approximation, i.c.
N = 1and M = 1, which, as will be shown later, can
give an interesting physical explanation to solutions
at low Rayleigh numbers.

According to equation (5), the first-order or first-
term approximation is

W = f\(r)sin -
T = 31 =r*)4+f-(r) cos mz. (6)

Substituting equation (6) into equations (1) and (2),
multiplying the resulting equations by the trial func-
tions sin 7z and cos nz respectively and integrating
them in the cylindrical space, the standard Galerkin
procedure [5] thus leads to the following linear,
ordinary differential equations:

w 2, 2,
f]‘“rfl‘H”j'f[:_E’ Ra (7
N B & ‘_l, my
.f:+rf:—H:.f:—2<M)/| (8)

with the boundary conditions being

fl(o) :fl(l) =0
S5(0) = £2(1) = 0. 9)
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It is interesting to note that by just ignoring higher-
order harmonics without any assumptions, i.. by only
considering the first term of the trigonometric expan-
sions of equation (5), we obtained the simplified equa-
tions similar to those linearized by some assumptions
with clear physical meanings, namely :

(a) in Darcy’s equation, equation (1), the buoyancy
force is induced mainly by the temperature dis-
tribution of the pure conduction pattern T, the part
contributed by 0, or Ra(ré8/ér), can be ignored ;

(b) in the energy equation, equation (2), energy
transferred by convective flow is mainly carried out
by udT,/dr, the part related to 8 can be ignored.

These assumptions result from the orthogonality of
trial functions and implicitly put into the governing
equations in the straight-forward process of turning
equations (1) and (2) into equations (7) and (8), and
the results will show that they are valid in the low
Rayleigh number region. This first-order approxi-
mation which has an interesting physical explanation
is possible only when there exists trial functions suit-
able to the physical problem [7]. Equations (7) and
(8) are solved with the finite difference method in
one dimension, and the results are compared with
complete finite difference solutions to the original
equations, equations (1) and (2).

2.2. Finite difference scheme

The scheme is based on the simple SOR method to
solve equations (1) and (2) and has been described
previously [4]. Release factors are chosen between 0.5
and 1.5. Non-uniform mesh grids varying from 21 to
81 in one direction are adopted according to different
Ra and H. Iteration is continued until the change in
temperature at each nodal point is less than 10~ 9.

3. RESULTS AND DISCUSSION

3.1. Results for low Rayleigh numbers
Streamlines and temperature distributions obtained
with the finite difference method are shown in Fig. 2

FiG. 2. Streamlines and isotherms for Ra =10, H =4,
AY = Y/ 10, AT = Ty /10, Yy = 0.157, T, = 0.263.
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F1G. 3. Comparison between ¢ ,, from the finite difference
scheme and the first-order Galerkin scheme.

for a very low Ra. The small value of ¥, charac-
terizes a very weak convective flow. The streamlines
are almost symmetrical about the z = H/2 plane, con-
firming the validity of the first-order approximation
of the partial Galerkin scheme which leads to such a
symmetricity of . The isotherms deviate only slightly
from those of the pure-conduction state. Nevertheless,
the central axis of the cylinder is no longer isothermal ;
owing to the occurrence of convection, the tem-
perature along the axis increases with the height,
reaching its maximum at the centre of the top bound-
ary (r =0, z = H). This can result in a maximum
temperature higher than that calculated by the pure-
conduction model, which would otherwise be con-
servative in estimating the maximum [4].

Figures 3 and 4 show values of . or the
circulating flow rates, and values of T, calculated
by the finite difference scheme and the first-order
Galerkin scheme, respectively. The results obtained
by the two schemes agree very well with each other
at Rayleigh numbers lower than 50, confirming the
validities of this first-order approximation and the
relevant assumptions. In Fig. 4 we can find that 7,
of the first-order approximation keeps increasing
monotonically with Ra and it deviates from results
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F1G. 4. Comparison between T, from the finite difference
scheme and the first-order Galerkin scheme.
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F1G. 5. Variations of ,,, with H at low Rayleigh numbers.

of the finite difference method exactly at the place
where the latter begins to decrease with Ra. This is
the result of ignoring other parts of the convective
term except that corresponding to the pure-con-
duction temperature, or u07T,/dr, so that the first-
order approximation cannot describe the cooling
effect of developed convection which lowers the tem-
perature over the whole domain considered [4]. The
range of Ra in which the two results agree well is the
same as that defined as the pseudo-conduction region,
1.e. Ra < 50 [4]. We have proved that, at low Ra,
increasing H does not obviously change the flow and
temperature fields near the top and bottom ends—its
only effect seems to be that the parallel flow in the
interior section is prolonged, and thus the values of
T ax and ., are invariable with H. As shown in Fig.
5. the ¥, for a certain Ra reaches a constant as
H increases, and generally the ¥, for a higher Ra
converges to a constant at higher H. Up to Ra = 50,
little change of .., can be observed at H > 3; in this
range of Ra, therefore, the results shown in Figs. 3
and 4 for H = 4 can be applied to higher values of H.

3.2. Results for high Rayleigh numbers
Figure 6 shows results for a high Rayleigh number.
We can find that most of the cylinder is occupied by

F1G. 6. Streamlines and isotherms for Ra = 10°, H = 4,
AY = Yo /10, AT = T /10, Yy = 65.2, T, = 0.037.
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FiG. 7. Vertical velocity profile at = = H/2 for Ra = 10°.

the ascending hot flow, while the descending flow
along the side wall becomes very thin and forms a
boundary layer. A region of temperature stratification
can be observed in the upper part of the cylinder, and
it extends toward the lower part as Ra increases; at
very high Ra, it occupies most of the cylinder except
at the bottom region or in the very vicinity of the side
wall.

Figure 7 shows the vertical velocity profile at
z = H/2. The vertical velocity is a constant in most of
the interior of the cylinder except near the cooling
wall. As will be shown later, this flow pattern provides
the possibility of applying the results of a cylinder to
enclosures with non-circular boundaries.

The variations of ¥, and T, with Ra are com-
pared in Fig. 8 for different values of H. At low Ra
(Ra < 50), .. seems to be invariable with H. This
is due to the dominance of conduction as mentioned
in the discussions of Figs. 2 and 5. At higher Ra. or
when convection becomes dominant, ¥, increases
with increasing H. Since for a higher H, the path
along which the ascending flow is heated is longer. the
velocity as well as the circulation rate (i) becomes
larger.

3.3. Comparison between results for a cylinder and
those for a rectangular enclosure

Results in Figs. 6 and 7 bring in the following
hypothesis. Since the upward flow at high Ra is homo-
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FIG. 9. Comparison between Y., of a cylinder and a rec-
tangular enclosure.

geneous in most of the cylinder, the downward bound-
ary layer along the cooling wall is so thin that little
effect of the curvature of the cooling boundary should
be expected. In this case, the flow would be deter-
mined by only two factors—the area of the cooling
boundary and the gross heat generation the boundary
surrounds. In problems dealing with homogeneous
heat generation, the two factors can be included by
using the following ratio as the characteristic length,
called in this paper the equivalent radius:

R, =2V, /A, = 2Ay/s (10)

where ¥}, stands for the volume of the heat-generating
medium, 4, the area of the cooling surface, 4, the
area of the horizontal section and s the total length
of the cooling boundary around the section. It is inter-
esting to note that R, appears to be in the same form
as the hydraulic radius of a forced flow in a pipe or
channel, with 4, corresponding to the area of a cross-
section and s the circumference of the section.
According to the definition in equation (10), the
equivalent radius for a cylinder is its radius (R") while
that for a rectangular enclosure is the width (L’)
between two vertical cooling walls. In equations (9)~
(11), results for a cylinder of H =4 are compared
with those for a rectangular enclosure [8] of the same
H. 1t should be noted that although the aspect ratios
H are equal to each other, the vertical geometrical
projections are different ; the projection of the cylinder
is twice as wide as that of the rectangular enclosure
owing to the difference in characteristic length.
Figure 9 shows that the values of ., are higher
for the cylindrical than for the rectangular enclosures
at low Rayleigh numbers. When the two cases have
the same S, H' and equal equivalent radius L’ = R'—
consequently the same Ra and H—convection is easier
to develop in a cylinder than in a rectangular enclosure
because the central vertical line around which the flow
is most likely to occur is twice the distance from the
cooling wall in a cylinder than in a rectangular enclos-
ure when L = R’. The same explanation can also be
applied to values of T, at low Rayleigh numbers
shown in Fig. 10. However, when temperature strati-

1 T T T

T T T T

]

Tmax

........

0.1

[ ———Cylindrical
L o Rectangular
10‘2 FEE NTTT TR ST RTTT DU TS FYTTI Y
10 102 103 104 108
Ra

F1G. 10. Comparison between T,,,. of a cylinder and a rec-
tangular enclosure.

fication and boundary-layer flow appear as a result of
increasing Ra, the two lines converge to very close
values, showing the similarity of the two flows. Figure
11 shows variations of local Nusselt numbers along
the side wall for the two enclosures, with no mean-
ingful difference being observed. All these results sup-
port the idea that high-Rayleigh number convection
induced by internal heat generation in vertical porous
enclosures can be generally treated by introducing the
equivalent radius as the characteristic length, regard-
less of their real geometries.

4. CONCLUSION

Numerical results obtained with the finite difference
method and the partial Galerkin method were pre-
sented on natural convection in a porous cylinder with
internal heating and side-wall cooling, for an aspect
ratio H (height vs radius) of 0.2-8 and a Rayleigh
number of 1-10°, with the low- and high-Rayleigh
number convections being differently treated accord-
ing to their flow structures.

At low-Rayleigh numbers (Ra < 50), streamlines
are parallel in the central part of the cylinder except
near the top and bottom ends. Convection in this Ra
range is mostly driven by the temperature distribution
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Fig. 11. Comparison between local Nusselt numbers of a
cylinder and a rectangular enclosure.
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of pure conduction 7, with the effects of other terms
in governing equations being negligible. A first-order
partial Galerkin scheme serves as a very effective way
to estimate values of ¥,,,,, and T,,..

At high-Rayleigh numbers (Ra > 5000), the con-
vection is characterized by a homogeneous upward
flow in most of the enclosure and a very thin down-
ward boundary layer along the vertical cooling wall.
Curvature of the vertical boundary seems to have
little effect on flow structures. This convection can
be generally treated by introducing a characteristic
length called equivalent radius, or A,/s, which is in
the same form as the widely known hydraulic radius.
By doing so. the results for a cylinder or a rectangular
enclosure can be applied to any other vertical enclos-
ures regardless of their geometries. Comparison was
made between the results for a cylinder and those for
a rectangular enclosure; their values of Y. T
and local Nusselt numbers agreed very well with each
other.
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CONVECTION NATURELLE DANS DES ENCEINTES VERTICALES POREUSES AVEC
GENERATION DE CHALEUR INTERNE

Résumé—La convection a faible ou fort nombre de Rayleigh induite par une génération de chaleur interne
dans un cylindre poreux vertical est étudiée de différentes fagons suivant les structures de I'écoulement.
Aux petits nombres de Rayleigh, un schéma du premier ordre de Galerkin est prouvé efficace. La convection
aux grands nombres de Rayleigh est caractérisée par un écoulement montant homogéne dans la partie
centrale du cylindre et une couche limite descendante trés mince sur les parois froides, avec effet négligeable
de la courbure de la couche limite. En introduisant une longueur caractéristique de méme forme qu'un
rayon hydraulique, les résultats peuvent étre appliqués a d’autres enceintes a frontiéres non circulaires.
Une comparaison des résultats sur le cylindre avec ceux sur une cavité rectangulaire appuie fortement cette

idée.

NATURLICHE KONVEKTION IN VERTIKALEN POROSEN STRUKTUREN MIT
INNEREN WARMEQUELLEN

Zusammenfassung—FEs wird die Konvektion in vertikalen pordsen Zylindern bei niedriger und hoher
Rayleigh-Zahl und entsprechend unterschiedlichen Stromungsformen untersucht. Die Konvektion wird
durch innere Wirmequellen verursacht. Bei kleinen Rayleigh-Zahlen erweist sich ein partielles Galerkin-
Verfahren erster Ordnung als geeignet. Konvektion bei hohen Rayleigh-Zahlen ist durch eine homogene
Aufwirtsstromung im Kern des Zylinders und eine sehr diinne abwirtsstromende Grenzschicht an der
gekiihlten Wand gekennzeichnet, wobei sich der EinfluB der Kriimmung der begrenzenden Wand als
vernachlissigbar erweist. Die Einfithrung einer charakteristischen Linge dhnlich wie beim hydraulischen
Radius fiihrt dazu, daB die Ergebnisse auf Hohlrdume mit nicht kreisfdrmigen Berandungen angewandt
werden kénnen. Ein Vergleich der Ergebnisse fiir einen Zylinder und fiir einen rechteckigen Hohlraum
bestitigt dies.

ECTECTBEHHAS KOHBEKIIMA B BEPTHUKAJIBHBLIX OBBEMAX ITOPUCTOI'O
MATEPHUAJIA C BHYTPEHHHUM TEIUIOBBIAEJTEHHEM

Amoramms—JIponiecchl KOHBEKIIMA B BEPTHKAJIbHOM NOPHCTOM HHWJIHHAPE, BO3HHKAIOLIHE 33 CYET BHYT-
PEHHEro TEIUIOBBLLAEIICHAS IPH HU3KHX M BBICOKHX YHCIax Panes, uccnenyioTcs pasiMyHBIMH METOOAMH
B COOTBETCTBHH CO CTPYKTYPO# TeueHus. B cnyuae uuskux uncen Panes adexTHBHON ABIIETCH 4aCTHY-
Haf cxeMa [asepkmHa mepBoro nopsaka. [{nf KOHBEKUMH IpH BBICOKAX YHCNIax Panes xapaxTepHO
CYyLIECTBOBAHHE OMHOPOJHOTO BOCXOOSIIETO MOTOK2 B LIEHTPaIbHON 4acTH MIUIMHIAPA H O4€Hb TOHKOI'O
OITYCKHOI'O IOrPaHMYHOrO CJIOA Ha OXJIaXJaroile# cTeHKe, mpuieM 3(dekT KPHBH3HBI IPAHHILI MpeHe6-
pexumo Mai. [IpH BBeIcHAM XapaKTEPHOTO pa3Mepa B TaKOM Xe BHAE, KaK M THAPaBJIHYECKHN panyc,
MOJTy4eHHbIE Pe3YJIbTATH MOT'YT NPHMEHATHCA K APYTHM IONOCTAM C HEKpYIJIbIMH rpaHnuamu. CpasHe-
HHE Pe3yJIbTaTOB Ul WMIJIMHAPA H NPAMOYTOJIBHOHN IIOJIOCTH MOXTBEPKIACT CHPaBEIUTHBOCTE MPEAIO-
KEHHOMH THIOTE3BI.



