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Abstract-Low- and high-Rayleigh number convections induced by internal heat generation in a vertical 
porous cylinder are studied in different ways according to their flow structures. At low Rayleigh numbers, 
a first-order partial Gdlerkin scheme is proved to be effective. Convection at high Rayleigh numbers is 
characterized by a homogeneous upward flow in the central part of the cylinder and a very thin downward 
boundary layer on the cooling wall. with the effect of the curvature of the boundary being negligible. By 
introducing a characteristic length in the same form as the hydraulic radius. the results can be applied to 
any other enclosures with non-circular boundaries. Comparison of results for a cylinder with those for a 

rectangular enclosure strongly supports the idea. 

1. INTRODUCTION 

NATURAL convection in porous enclosures with inter- 

nal heat generation has received more and more atten- 
tion owing to its possible applications in engineering 
problems, such as heat removal from radioactive 
waste materials, storage of agricultural products, exo- 
thermic chemical reaction, etc. Haajizadeh et al. [l] 

have theoretically studied natural convection inside a 
rectangular porous enclosure with uniform heat gen- 
eration. Vasseur et al. [2] have presented numerical 
results on natural convection in an internally heated 
horizontal porous annulus. Stewart and Dona [3] 
were concerned with a situation similar to that in a 
cylindrical food-storage bin which was modellized 
with a heat generating vertical porous cylinder, adia- 
batic at the bottom and cooled at the side wall and 
the top boundaries. 

In the present study, we deal with natural con- 
vection in a vertical porous cylinder with uniform 
internal heat generation and side-wall cooling by the 
partial Galerkin method and the finite difference 
method. In the low Rayleigh number region, an effec- 
tive partial Galerkin scheme is developed. Its first- 
order approximation, valid at low Rayleigh numbers 
by comparison with the finite difference scheme, gives 
a better physical explanation of the problem. In the 
high Rayleigh number region, emphasis is placed on 
the structures of the stratification at the interior region 
and boundary-layer flow along the vertical wall of the 
cylinder. The flow in a cylinder is also compared with 
that in a vertical rectangular enclosure to examine 
whether the curvature of the cooled wall has any 
effect on the flow structure and heat transfer at high 
Reynolds numbers when boundary-layer flow is 
dominant. 

2. MATHEMATICAL MODEL 

The geometry of the problem considered is shown 
in Fig. 1. Owing to the symmetry of the boundary 

conditions and the gravitational force, steady-state 
flows in the cylinder are assumed to be two-dimen- 
sional and symmetrical about the central vertical axis 
of the cylinder. The governing equations, i.e. Darcy’s 
equation and the equation of the conservation of 
energy, are given in their dimensionless form [4] as 
follows : 

where T stands for temperature, u and z’ velocities 
in the Y- and z-directions, respectively, ,f’ the distri- 
bution function of heat generation rates, and V’ the 
Laplacian operator in the cylindrical coordinate 
system. Stream function $ is defined as 

a 7/+‘=0 

FIG. I, Flow geometry and coordinate system. 
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NOMENCLATURE 

area of a horizontal section 
area of vertical cooling surface 
specific heat capacity 
distribution function of heat generation 
functions defined in partial Galerkin 

scheme for $ and T. respectively 
gravitational acceleration 
aspect ratio. H’/R’ 
height 
effective thermal conductivity 
width of a vertical rectangular enclosure 
truncating numbers of expansion series 

local Nusselt number 

pressure, p’IY/( eta) 
radius of a cylinder 
radial distance. r’/ R’ 
Rayleigh number, g/k%R’3/(rvk) 
equivalent radius defined in equation 

(10) 
total length of cooling boundaries 
around a vertical section 

1 ivy. 1 ;* 
LlC -~ 

I’ ?Z 7 
I’= ~-~ ~ &. 

The boundary conditions on II/ and Tare 

(3) 

$ = 0 at all boundaries 

T=O atr=l. (4) 

In the present paper, we only consider the situation 
of uniform heating, i.e. .f‘= I in equation (2). and 
adiabatic top boundary. However, non-uniform heat 
generation and top-boundary cooling can have sig- 
nificant effects on heat transfer, particularly the 
maximum temperature : these results are reported 

elsewhere [4]. 

2.1. Partiul Gakwkin schrme 
Stream function $ and temperature Tin equations 

(1) and (2) can be partially expanded as follows : 

$=f’,(r) 2 sin n7c: 
I,_ / 

.\I 
T= T,+c: = :(I -r2)+,J2(r) c cos~wc~ (5) 

m, F I 

where T, = (1 -r’)/4 is the temperature of pure- 
conduction solution and 0 the deviation from it. It 
was proved that using the trigonometric functions in 
expanding solutions is quite efficient to the problem 

heat generation rate 
temperature, ( T’- T;,)k/(S’R”) 
temperature at pure-conduction state 

maximum temperature 
radial velocity component. u’R’l’r 
velocity vector. [u. 1.1 
vertical velocity component, r’R’/a 
vertical distance. I’: R’. 

Greek symbols 

; 

equivalent thermal diffusivity 
thermal expansion coefficient 

0 temperature defined by (T- T,) 
ti permeability 

1’ dynamic viscosity 

1’ kinematic viscosity 
fluid density 
stream function. 

Superscript 
dimensional variable. 

of natural convection in a porous medium [5, 61, and 

that the first-order approximation can bring about 
very simple and relatively accurate solutions at low 
Rayleigh numbers [5]. 

Although solutions can also be obtained for any 
higher truncation numbers N and M, we focus our 
attention here on the first-order approximation. i.e. 
N = 1 and M = I. which, as will be shown later, can 
give an interesting physical explanation to solutions 
at low Rayleigh numbers. 

According to equation (5), the first-order or first- 

term approximation is 

$ = 1’,(r) sin n: 

T = :(I -r’)+,f,(r) cos 7~:. (6) 

Substituting equation (6) into equations (1) and (2). 
multiplying the resulting equations by the trial func- 
tions sin x: and cos 7-c~ respectively and integrating 
them in the cylindrical space. the standard Galerkin 
procedure [5] thus leads to the following linear. 
ordinary differential equations : 

,f”; _ f f; _ ;; ,f, = _ I,-? ,+, (7) 

(8) 

with the boundary conditions being 

.f’,(O) =f’,(l) = 0 

y?(O) = f2(l) = 0. (9) 
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It is interesting to note that by just ignoring higher- 
order harmonics without any assumptions, i.e. by only 
considering the first term of the trigonometric expan- 
sions of equation (5). we obtained the simplified equa- 
tions similar to those linearized by some assumptions 
with clear physical meanings, namely : 

(a) in Darcy’s equation, equation (I), the buoyancy 
force is induced mainly by the temperature dis- 
tribution of the pure conduction pattern To, the part 
contributed by 0. or Ra(r?fl/&-). can be ignored : 

(b) in the energy equation, equation (2), energy 
transferred by convective flow is mainly carried out 
by ~?T,,/i)r, the part related to 0 can be ignored. 

These assumptions result from the orthogonality of 
trial functions and implicitly put into the governing 
equations in the straight-forward process of turning 
equations (1) and (2) into equations (7) and (8), and 
the results will show that they are valid in the low 
Rayleigh number region. This first-order approxi- 
mation which has an interesting physical explanation 
is possible only when there exists trial functions suit- 
able to the physical problem [7]. Equations (7) and 
(8) are solved with the finite difference method in 
one dimension, and the results are compared with 
complete finite difference solutions to the original 
equations, equations (I) and (2). 

2.2. Finite d@rence scheme 
The scheme is based on the simple SOR method to 

solve equations (1) and (2) and has been described 
previously [4]. Release factors are chosen between 0.5 
and 1.5. Non-uniform mesh grids varying from 21 to 
81 in one direction are adopted according to different 
Ra and H. Iteration is continued until the change in 
temperature at each nodal point is less than 1 O- ‘. 

3. RESULTS AND DISCUSSION 

3.1. Results,for low Rayleigh numbers 
Streamlines and temperature distributions obtained 

with the finite difference method are shown in Fig. 2 

FIG. 2. Streamlines and isotherms for Ra = 10, H = 4. 
A$ = $,,,,JlO, AT = T,,,,,/lO, $,,,_ = 0.157, T,,,,, = 0.263. 

RU 

FIG. 3. Comparison between I),,,,~ from the finite difference 
scheme and the first-order Galerkin scheme. 

for a very low Ra. The small value of $,,X charac- 
terizes a very weak convective flow. The streamlines 
are almost symmetrical about the z = H/2 plane, con- 
firming the validity of the first-order approximation 
of the partial Galerkin scheme which leads to such a 
symmetricity of II/. The isotherms deviate only slightly 
from those of the pure-conduction state. Nevertheless, 
the central axis of the cylinder is no longer isothermal : 
owing to the occurrence of convection, the tem- 
perature along the axis increases with the height, 
reaching its maximum at the centre of the top bound- 
ary (r = 0, z = H). This can result in a maximum 
temperature higher than that calculated by the pure- 
conduction model, which would otherwise be con- 
servative in estimating the maximum [4]. 

Figures 3 and 4 show values of $,,,. or the 
circulating flow rates, and values of T,,,,, calculated 
by the finite difference scheme and the first-order 
Galerkin scheme, respectively. The results obtained 
by the two schemes agree very well with each other 
at Rayleigh numbers lower than 50, confirming the 
validities of this first-order approximation and the 
relevant assumptions. In Fig. 4 we can find that T,,,,, 
of the first-order approximation keeps increasing 
monotonically with Ra and it deviates from results 

FIG. 4. Comparison between T,,, from the finite difference 
scheme and the first-order Galerkin scheme. 
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FE. 5. Variations of I),,,,, with Hat low Rayleigh numbers. FIG. 7. Vertical velocity profile at 2 = H/2 for Ru = IO‘ 

of the finite difference method exactly at the place 
where the latter begins to decrease with Ra. This is 
the result of ignoring other parts of the convective 
term except that corresponding to the pure-con- 
duction temperature. or uar,J&, so that the first- 
order approximation cannot describe the cooling 
effect of developed convection which lowers the tem- 
perature over the whole domain considered [4]. The 
range of Ra in which the two results agree well is the 

same as that defined as the pseudo-conduction region, 
i.e. Ra < 50 [4]. We have proved that, at low Ra, 
increasing H does not obviously change the flow and 
temperature fields near the top and bottom ends-its 
only effect seems to be that the parallel flow in the 
interior section is prolonged, and thus the values of 
T,,,,, and I),,,,~ are invariable with H. As shown in Fig. 

5. the tj,,,,, for a certain Ra reaches a constant as 
H increases, and generally the I),,,.~ for a higher Ru 
converges to a constant at higher H. Up to Ra = 50. 

little change of I),,,.~ can be observed at H > 3 ; in this 
range of Ra, therefore, the results shown in Figs. 3 
and 4 for H = 4 can be applied to higher values of H. 

3.2. Results for high Rayleigh numbers 
Figure 6 shows results for a high Rayleigh number. 

We can find that most of the cylinder is occupied by 

: E 
FIG. 6. Streamlines and isotherms for Ra = IO’, H = 4, 

AI// = Il/,,,/lO. AT = T,,,,,/lO, G,,,,, = 65.2, T,.,, = 0.037. 
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the ascending hot flow, while the descending flow 
along the side wall becomes very thin and forms a 
boundary layer. A region of temperature stratification 
can be observed in the upper part of the cylinder, and 
it extends toward the lower part as Ra increases; at 
very high Ra, it occupies most of the cylinder except 
at the bottom region or in the very vicinity of the side 
wall. 

Figure 7 shows the vertical velocity profile at 
2 = H/2. The vertical velocity is a constant in most of 

the interior of the cylinder except near the cooling 
wall. As will be shown later, this flow pattern provides 
the possibility of applying the results of a cylinder to 
enclosures with non-circular boundaries. 

The variations of I)“,_ and T,,,,, with Ra are com- 
pared in Fig. 8 for different values of H. At low Ra 
(Ra < 50), $,,% seems to be invariable with H. This 
is due to the dominance of conduction as mentioned 
in the discussions of Figs. 2 and 5. At higher Ra. or 
when convection becomes dominant, $,,,,, increases 
with increasing H. Since for a higher H, the path 

along which the ascending flow is heated is longer. the 
velocity as well as the circulation rate ($,,,) becomes 
larger. 

3.3. Comparison betwleen results ,for 11 cylinder and 
those filr a rectangular encloswe 

Results in Figs. 6 and 7 bring in the following 
hypothesis. Since the upward flow at high Ra is homo- 

1o-2r 
1 10 Id 10-3 IO’ 105 

Ra 

FIG. 8. im,, for diRerent H. 
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Ra 

FIG. 9. Comparison between I),,, of a cylinder and a rec- FIG. 10. Comparison between T,,,,, of a cylinder and a rec- 
tangular enclosure. tangular enclosure. 

geneous in most of the cylinder, the downward bound- 
ary layer along the cooling wall is so thin that little 
effect of the curvature of the cooling boundary should 
be expected. In this case, the flow would be deter- 
mined by only two factors-the area of the cooling 
boundary and the gross heat generation the boundary 
surrounds. In problems dealing with homogeneous 
heat generation, the two factors can be included by 
using the following ratio as the characteristic length, 
called in this paper the equivalent radius : 

R, = 2V,,/A, = 2Ah/s (10) 

where V,, stands for the volume of the heat-generating 
medium, A, the area of the cooling surface, A,, the 
area of the horizontal section and s the total length 
of the cooling boundary around the section. It is inter- 
esting to note that R, appears to be in the same form 
as the hydraulic radius of a forced flow in a pipe or 
channel, with A, corresponding to the area of a cross- 
section and s the circumference of the section. 

According to the definition in equation (lo), the 
equivalent radius for a cylinder is its radius (R’) while 
that for a rectangular enclosure is the width (L’) 
between two vertical cooling walls. In equations (9)- 
(1 1), results for a cylinder of H = 4 are compared 
with those for a rectangular enclosure [8] of the same 
H. It should be noted that although the aspect ratios 
H are equal to each other, the vertical geometrical 
projections are different ; the projection of the cylinder 
is twice as wide as that of the rectangular enclosure 
owing to the difference in characteristic length. 

Figure 9 shows that the values of timaX are higher 
for the cylindrical than for the rectangular enclosures 
at low Rayleigh numbers. When the two cases have 
the same S’, H’ and equal equivalent radius L’ = R’- 

consequently the same Ra and H-onvection is easier 
to develop in a cylinder than in a rectangular enclosure 
because the central vertical line around which the flow 
is most likely to occur is twice the distance from the 
cooling wall in a cylinder than in a rectangular enclos- 
ure when L’ = R’. The same explanation can also be 
applied to values of T,,, at low Rayleigh numbers 
shown in Fig. 10. However, when temperature strati- 

----.--- Rectangular 

lo-:; 105 

Ra 

fication and boundary-layer flow appear as a result of 
increasing Ra, the two lines converge to very close 
values, showing the similarity of the two flows. Figure 
11 shows variations of local Nusselt numbers along 
the side wall for the two enclosures, with no mean- 
ingful difference being observed. All these results sup- 
port the idea that high-Rayleigh number convection 
induced by internal heat generation in vertical porous 
enclosures can be generally treated by introducing the 
equivalent radius as the characteristic length, regard- 
less of their real geometries. 

4. CONCLUSION 

Numerical results obtained with the finite difference 
method and the partial Galerkin method were pre- 
sented on natural convection in a porous cylinder with 
internal heating and side-wall cooling, for an aspect 
ratio H (height vs radius) of 0.2-8 and a Rayleigh 
number of l-10’. with the low- and high-Rayleigh 
number convections being differently treated accord- 
ing to their flow structures. 

At low-Rayleigh numbers (Ra < 50), streamlines 
are parallel in the central part of the cylinder except 
near the top and bottom ends. Convection in this Ra 

range is mostly driven by the temperature distribution 

z/H 
0.5 H=4 

Ra = 32000 

0 2 4 6 6 

NU 

FIG. Il. Comparison between local Nusselt numbers of a 
cylinder and a rectangular enclosure. 
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of pure conduction T,, with the effects of other terms 
in governing equations being negligible. A first-order 
partial Galerkin scheme serves as a very effective way 
to estimate values of $,,,, and T,,,;,, 

At high-Rayleigh numbers (Ru > 5000). the con- 
vection is characterized by a homogeneous upward 

flow in most of the enclosure and a very thin down- 
ward boundary layer along the vertical cooling wall. 
Curvature of the vertical boundary seems to have 

little effect on flow structures. This convection can 
be generally treated by introducing a characteristic 

length called equivalent radius. or Ah/s. which is in 
the same form as the widely known hydraulic radius. 
By doing so. the results for a cylinder or a rectangular 
enclosure can bc applied to any other vertical enclos- 
ures regardless of their geometries. Comparison was 

made between the results for a cylinder and those for 
a rectangular enclosure; their values of $,,,,, r,,, 

and local Nusselt numbers agreed very well with each 

other. 
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CONVECTION NATURELLE DANS DES ENCEINTES VERTICALES POREUSES AVEC 
GENERATION DE CHALEUR INTERNE 

R&sum&La convection i faible ou fort nombre de Rayleigh induite par une g&ration de chaleur interne 
dans un cylindre poreux vertical est etudike de diffkrentes fagons suivant Ies structures de I’6coulement. 
Aux petits nombres de Rayleigh, un schCma du premier ordre de Galerkin est prouv6 e&ace. La convection 
aux grands nombres de Rayleigh est caractkriske par un tcoulement montant homogene dans la partie 
centrale du cylindre et une couche limite descendante tri.s mince sur les parois froides, avec effet nkgligeable 
de la courbure de la couche limite. En introduisant une longueur caracttristique de m&me forme qu’un 
rayon hydraulique. les rCsultats peuvent ttre appliquks i d’autres enceintes g front&es non circulaires. 
Une comparaison des resultats sur le cylindre avec ceux sur une cavil6 rectangulaire appuie fortement cette 

id&e. 

NATijRLICHE KONVEKTION IN VERTIKALEN PORiiSEN STRUKTUREN MIT 
INNEREN WARMEQUELLEN 

Zusammenfassung-Es wird die Konvektion in vertikalen porasen Zylindern bei niedriger und hoher 
Rayleigh-Zahl und entsprechend unterschiedlichen Striimungsformen untersucht. Die Konvektion wird 
durch innere Wgrmequellen verursacht. Bei kleinen Rayleigh-Zahlen erweist sich ein partielles Galerkin- 
Verfahren erster Ordnung als geeignet. Konvektion bei hohen Rayleigh-Zahlen ist durch eine homogene 
AufwPrtsstramung im Kern des Zylinders und eine sehr diinne abwgrtsstriimende Grenzschicht an der 
gekiihlten Wand gekennzeichnet. wobei sich der EinfluB der Kriimmung der begrenLenden Wand als 
vernachkissigbdr erweist. Die Einfiihrung einer charakteristischen LInge Bhnlich wie beim hydraulischen 
Radius fiihrt dazu, dal3 die Ergebnisse auf Hohlrdume mit nicht kreisfiirmigen Berandungen angewandt 
werden k6nnen. Ein Vergleich der Ergebnisse fiir einen Zylinder und fiir einen rechteckigen Hohlraum 

bestHtigt dies. 

ECTECTBEHHAII KOHBEKqkUr B BEPTkiKAJIbHbIX OB-bEMAX HOPMCTOI-0 
MATEPHAJIA C BHYTPEHHHM TEI-IJTOBbIJ@JIEHMEM 

.biOT~~pO~CCCL4 KOHBCKIUiH B BepTHKaJibHOM nOpHCTOMU~LnHHnpe,B03HHKaHIIIIHe3aC9eT BliyT- 

peHHer0 Te~OB~eneHaK npE5 HH3KHX H EWCOKHX YHCJEW P3neff,HCCJIeAyIOTCB pa3JIZFIHbIMH MeTOAaMB 

BCOOTB~TCTBAHCOCTPYYTY~O~~T~S~HHX. Bcnylae ~H3UIxqHcenP3neK~KTaBHOiiKnnneTcnqacru9- 

Han cxehfa llneprsma nepeoro nopnnKa. )Jns KoHBeKmisi npH BbICOKsix vHc.nax P3nen xapaxTepH0 
C)flWCTBORaHHC O~OpOJ&IOI-0 BOCXOJJlUUerO nOTOKa B IJeHTpaJ-IbHOii YaCTH UIiJmHJlpa H OqeHb TOIiKOrO 

onycnnoro norpamiworo cnon Ha oxnaxcnasomek creHKe,npweM 3+$eKT ~p~sw3~arrpa~Hub1npeae6,- 

pewibfo Ma~~.llpaseenemiss xapagTepHoropa3Mepa B TaEoh4 rteswe,KaK arwqwwecaafipamiyc, 

nonpeHHble pe3ynbTaTbthforyTnpubfeHnTbcn Knpyrmdnonocrn~c HerrpyrnblMarpamiqaMH. Cpamie- 
mie pe3ynbTaToe ,4nn gzimmnpa B npKb4oyronbHofi nonocTn nomeepxnaeT cnpasezumeocrb npeano- 

lKeHHOiirEiIIOTe3bl. 


